BioElectronics bio-impedance measurement and modeling

F. Kölbl

Bioelectronic group - IMS

florian.kolbl@ims-bordeaux.fr

Lecture

- What are the basic physics of (passive) bioelectricity?
- How to measure and model bio-impedance?

Lecture

- What are the basic physics of (passive) bioelectricity?
- How to measure and model bio-impedance?

Lab

- Electrodes and tissue impedance measurement,
- Bioelectrical measurement and modeling,
- Bioelectronics and potatoes!

Bioelectric interfaces

Malmivuo, J., Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA.

Bioelectric interfaces

Malmivuo, J., Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA.

Bioelectric interfaces

Malmivuo, J., Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA.

Living cell

micrometric machine block of a living organism, with:

- chemical, molecular and protidic capabilities,
- procedure storage capabilities,
- potential electrical activity, at least electrical properties.

muscle cells:

- mechanically active,
- electro sensitive,

neurons:

- electrically active,
- electro sensitive,

bone cells:

- not excitable,
- have passive properties

muscle cells:

- mechanically active,
- electro sensitive,

neurons:

- electrically active,
- electro sensitive,

bone cells:

- not excitable,
- have passive properties

All cells have common passive electrical and dielectrical properties, tissue-impendance is a singular characteristic.

Cell morphology and cancer progression

Figure 1. Tissue selection. Pair-wised healthy colon, pertilesional area and CRC were evaluated by means of hematoxylin-colin stating (A), CD34+ blood vessels (B) and collaper (blue stating) by means of Masson Tricherone statin. (C), C: crystrate, Elptimization provint JMm meandarist mucosast Color C: crystrate, Elptimization provint JMm meandarist mucosase. C, carcinoma, Elstinatamoral strom. 'Blood vessels, Pictures are representative of pair-wised tissues from one of the six patients tested and listed in supplementary Material 1.

Nebuloni et al (2016). Scientific reports, 6(1), DOI: 10.1038/srep22522.

Cell morphology and cancer progression

Figure 1. Tissue selection. Pair-wised healthy coles. prelicional area and CRC were evaluated by means of hematoxylin-cosin staining (A), CD34+ blood vessels (B) and collagen (blue staining) by means of Masson Tichteome stain (C). Cr. cryptac Lg lamina proprin Am, mancalaris muscular: Gaucianoma. Lis intratumonal strom. 'Blood vessels, Pictures are representative of pair-wised tissues from one of the six patients tested and listed in supplementary Material.

Nebuloni et al (2016). Scientific reports, 6(1), DOI: 10.1038/srep22522.

Signiticant changes linked with passive properties

- Cell size and shape, density,
- Cell membrane properties, nuclueus size and shape,
- Extracellular matrix (ECM) composition

Tissue passive properties

- Conduction in ionic media
- Unveiling the membrane

2 Connecting to the tissues: electrodes

Quick Definition/Reminder

Impedance: complex number, electrical property of a material, in Ohm

$$Z\left(f
ight)=rac{V\left(f
ight)}{I\left(f
ight)}=R_{s}+\jmath X_{s}$$
 where $\jmath^{2}=-1$

Quick Definition/Reminder

Impedance: complex number, electrical property of a material, in Ohm

Electrical conduction has a different nature considering the medium

Electrical conduction has a different nature considering the medium

Electrical Circuits

charge carrier: electron

Electrical conduction has a different nature considering the medium

Electrical Circuits

charge carrier: electron

ISSUE	-			
		SC	116	2
10040		55	u	-

charge carrier: ions

Electrical conduction has a different nature considering the medium

Electrical Circuits

charge carrier: electron

Tissue

charge carrier: ions

elec. charge:

 $-1 \cdot e$

elec. charges:

 $Na^+, K^+: +1 \cdot e$ $Cl^-, HCO_3^-: -1 \cdot e$ $Ca^{2+}, Mg^{2+}: +2 \cdot e...$

Electrical conduction has a different nature considering the medium

Electrical Circuits

charge carrier: electron

elec. charge:

 $-1 \cdot e$

Tissue

charge carrier: ions

elec. charges:

$$Na^+, K^+ : +1 \cdot e$$

 $Cl^-, HCO_3^- : -1 \cdot e$
 $Ca^{2+}, Mg^{2+} : +2 \cdot e...$

current:

$$i = \frac{dQ}{dt}$$

current:

$$i = \sum_{ions} I_{ion}$$

each ion can move due to *migration*, *diffusion*, *convection*

Resistance, conductance

with ρ the resistivity in $\Omega \cdot m$ or σ the conductivity in $S \cdot m^{-1}$,

with ρ the resistivity in $\Omega \cdot m$ or σ the conductivity in $S \cdot m^{-1}$,

	material	conductivity $(S \cdot m^{-1})$
to keep in mind:	coper	$6 \cdot 10^7$
to keep in minu.	germanium	2.17
	deionized water	$5.5\cdot10^{-6}$

Resistivity, conductivity

In a ionic solution:

In a ionic solution:

the conductivity is given by:

$$\sigma = \sum_{k \text{ ions}} \Lambda_k c_k$$

with c the chemical concentration in $\mathit{mol}\cdot L^{-1}$ and Λ the molar conductivity in $S\cdot \mathit{m}^2\cdot \mathit{mol}^{-1}$

In a ionic solution:

the conductivity is given by:

$$\sigma = \sum_{k \text{ ions}} \Lambda_k c_k$$

with c the chemical concentration in $\mathit{mol} \cdot \mathit{L}^{-1}$ and Λ the molar conductivity in $\mathit{S} \cdot \mathit{m}^2 \cdot \mathit{mol}^{-1}$

and in strong electrolytes, at very low concentration, as in living organisms, $\Lambda\approx\Lambda_0$ independant from the concentration.

In a ionic solution:

the conductivity is given by:

$$\sigma = \sum_{k \text{ ions}} \Lambda_k c_k$$

with c the chemical concentration in $mol \cdot L^{-1}$ and Λ the molar conductivity in $S \cdot m^2 \cdot mol^{-1}$

and in strong electrolytes, at very low concentration, as in living organisms, $\Lambda\approx\Lambda_0$ independant from the concentration.

to keep in mind:						
Cation	Λ_0 in $S \cdot cm^2 \cdot mol^{-1}$	Anion	Λ_0 in $S \cdot cm^2 \cdot mol^{-1}$			
$H^{+}/H_{3}O^{+}$	350	OH-	198			
Na^+	50	CI ⁻	76			
κ^+	74	HCO_3^-	45			
Ca^{2+}	119	CO_3^{-}	72			

Resistivity, conductivity an example

Example: Conductivity of the 0.9% Saline solution

9g of NaCl per Liter of water the atomic mass of NaCls is $58.5g \cdot mol^{-1}$

Resistivity, conductivity an example

Example: Conductivity of the 0.9% Saline solution

9g of NaCl per Liter of water the atomic mass of NaCls is $58.5g \cdot mol^{-1}$

$$NaCl = Na^+ + Cl^-$$

Example: Conductivity of the 0.9% Saline solution

9g of NaCl per Liter of water the atomic mass of NaCls is $58.5g \cdot mol^{-1}$

$$NaCl = Na^+ + Cl^-$$

$$[Na^+] = [Cl^-] = \frac{m_{NaCl}}{M_{NaCl}} = \frac{9}{58.5} = 0.154 \ mol \cdot L^{-1}$$

Example: Conductivity of the 0.9% Saline solution

9g of NaCl per Liter of water the atomic mass of NaCls is $58.5g \cdot mol^{-1}$

$$NaCl = Na^+ + Cl^-$$

$$[Na^+] = [CI^-] = \frac{m_{NaCl}}{M_{NaCl}} = \frac{9}{58.5} = 0.154 \ mol \cdot L^{-1}$$

$$\sigma = \Lambda_{0,Na^+} [Na^+] + \Lambda_{0,Cl^-} [Cl^-] = \frac{0.154 (50 + 76)}{1000}$$
(divided by 1000 to convert the L⁻¹in cm⁻³)

Example: Conductivity of the 0.9% Saline solution

9g of NaCl per Liter of water the atomic mass of NaCls is $58.5g \cdot mol^{-1}$

$$NaCl = Na^+ + Cl^-$$

$$[Na^+] = [Cl^-] = \frac{m_{NaCl}}{M_{NaCl}} = \frac{9}{58.5} = 0.154 \ mol \cdot L^{-1}$$

$$\sigma = \Lambda_{0,Na^{+}} [Na^{+}] + \Lambda_{0,Cl^{-}} [Cl^{-}] = \frac{0.154 (50 + 76)}{1000} \approx 19 \ mS \cdot cm^{-1}$$

(divided by 1000 to convert the L^{-1} in cm^{-3})

Physical separation between the intra- and extra-cellular medium

- about 5*nm* thick
- phospolipid-bilayer: one layer is composed of one hydrophobic and one hydrophilic lipid that self assemble in membrane

Physical separation between the intra- and extra-cellular medium

- about 5*nm* thick
- phospolipid-bilayer: one layer is composed of one hydrophobic and one hydrophilic lipid that self assemble in membrane

Lipidic (insulating) membrane, sperating two conductive electrolytes that ionic moving charges cannot cross

Lipidic (insulating) membrane, sperating two conductive electrolytes that ionic moving charges cannot cross ⇒ Equivalent to a capacitance

Computation of the membrane capacitance

Data

for a 5 *nm* thick membrane, $\varepsilon_0 = 8.85418782 \cdot 10^{-12} m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$ the relative membrane permittivity is $\varepsilon_r = 5$
Computation of the membrane capacitance

Data

for a 5 *nm* thick membrane, $\varepsilon_0 = 8.85418782 \cdot 10^{-12} m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$ the relative membrane permittivity is $\varepsilon_r = 5$

$$C = \varepsilon_0 \varepsilon_r \frac{S}{e} = \widetilde{c}_M \cdot S$$

where \widetilde{c}_M is the specific membrane capacity $(F \cdot m^{-2})$

Computation of the membrane capacitance

Data

for a 5 *nm* thick membrane, $\varepsilon_0 = 8.85418782 \cdot 10^{-12} m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$ the relative membrane permittivity is $\varepsilon_r = 5$

$$C = \varepsilon_0 \varepsilon_r \frac{S}{e} = \widetilde{c}_M \cdot S$$

where \widetilde{c}_M is the specific membrane capacity $(F \cdot m^{-2})$

$$\widetilde{c}_{M} = \frac{\varepsilon_{0}\varepsilon_{r}}{e} = \frac{5 \times 8.85418782 \cdot 10^{-12}}{5 \cdot 10^{-9}}$$

Computation of the membrane capacitance

Data

for a 5 *nm* thick membrane, $\varepsilon_0 = 8.85418782 \cdot 10^{-12} m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$ the relative membrane permittivity is $\varepsilon_r = 5$

$$C = \varepsilon_0 \varepsilon_r \frac{S}{e} = \widetilde{c}_M \cdot S$$

where \widetilde{c}_M is the specific membrane capacity $(F \cdot m^{-2})$

$$\widetilde{c}_{M} = \frac{\varepsilon_{0}\varepsilon_{r}}{e} = \frac{5 \times 8.85418782 \cdot 10^{-12}}{5 \cdot 10^{-9}} \approx 8.85 \ mF \cdot m^{-2} = 0.885 \ \mu F \cdot cm^{-2}$$

 $\widetilde{c}_{\mathcal{M}} = 1 \; \mu F \cdot cm^{-2}$ is a common value in the litterature

Intra/extra-celllular medium

- two resistive media
- small ionic concentration changes enable to consider it as constant resistivity, (especially in extra-cellular space)

All cellular membranes

capacitive

Intra/extra-celllular medium

- two resistive media
- small ionic concentration changes enable to consider it as constant resistivity, (especially in extra-cellular space)

first approximation tissue impedance model:

All cellular membranes

capacitive

warning: tissue only, no electrode

Tissue passive propertiesConduction in ionic media

• Unveiling the membrane

2 Connecting to the tissues: electrodes

Electrodes

Not a direct electrical acces to the tissue

Not a direct electrical acces to the tissue One or more materials directly in contact with the tissue

Which material? (1/2)

...

		toxicity	reactivity	
conductors	Gold	non-toxic	non-reactive	
	Silver	toxic		
	Copper	toxic		
	Iron	toxic		
	Stainless Stell	non-toxic		
	Platinum	toxic		
	Tantalum		reactive	
	Titanium			biocompatible
	Tungsten		non-reactive	
	Gold–nickel–chromium	non-toxic		
	Gold–palladium–rhodium	non-toxic		
	Nickel-chromium (Nichrome)	non-toxic	reactive	
	Nickel-chromium-molybdenum	non-toxic		
	Nickel–titanium (Nitinol)			biocompatible
	Platinum–iridium	non-toxic		
	Platinum–nickel	non-toxic		
	Platinum–rhodium	non-toxic		
	Platinum-tungsten	non-toxic		
	Platinized platinum (Pt black)	non-toxic		

		toxicity	reactivity	
Semi-conductors	Silicon		non-reactive	biocompatible
	Germaniom	toxic		
Insulators	Alumina ceramic		non-reactive	biocompatible
	Araldite (epoxy plastic resin)		reactive	
	Polyethylene		non-reactive	
	Polyimide			biocompatible
	Polypropylene		non-reactive	
	Silicon dioxide (Pyrex)		reactive	
	Teflon TFE (high purity)		non-reactive	
	Teflon TFE (shrinkable)		reactive	
	Titanium dioxide		reactive	

adapted from Merrill, D. R., Bikson, M., Jefferys, J. G. (2005). Electrical stimulation of excitable tissue: design of

efficacious and safe protocols. Journal of neuroscience methods, 141(2), 171-198.

commonly used materials in electronics and micro-electronics (gold, stainless steel, silicon, polyimide) can be used! warning: no copper

legend:

solvated (+) ion

unsolvated (-) ion

* water dipole

legend:

solvated (+) ion

- unsolvated (-) ion
- * water dipole

Helmholtz Capacitance

$$C_H = \varepsilon_0 \varepsilon_r \frac{A}{d_H}$$

- *d_H* is a constant
- A the effective electrode Surface Area

about 230 $\mu F \cdot cm^{-2}$ value depends on surface roughness

Helmholtz Capacitance

$$C_H = \varepsilon_0 \varepsilon_r \frac{A}{d_H}$$

- *d_H* is a constant
- A the effective electrode Surface Area

about $230 \mu F \cdot cm^{-2}$ value depends on surface roughness

Gouy-Chapman Capacitance

$$C_D = \frac{\varepsilon_0 \varepsilon_r}{L_D} \cosh\left(\frac{q_i \Phi_0}{2RT}\right)$$

- q_i is the ion charge
- $L_D = \sqrt{\frac{\varepsilon_0 \varepsilon_r}{2RTc_i q_i}}$, with c_i the ion concentration
- with Φ_0 the junction voltage about $50\mu F\cdot cm^{-2}$ possibly (voltage) non-linear

Helmholtz Capacitance

$$C_H = \varepsilon_0 \varepsilon_r \frac{A}{d_H}$$

- *d_H* is a constant
- A the effective electrode Surface Area

about $230 \mu F \cdot cm^{-2}$ value depends on surface roughness

Gouy-Chapman Capacitance

$$C_D = \frac{\varepsilon_0 \varepsilon_r}{L_D} \cosh\left(\frac{q_i \Phi_0}{2RT}\right)$$

- q_i is the ion charge
- $L_D = \sqrt{\frac{\varepsilon_0 \varepsilon_r}{2RTc_i q_i}}$, with c_i the ion concentration
- with Φ_0 the junction voltage about $50\mu F\cdot cm^{-2}$ possibly (voltage) non-linear

overall specific capacitance value about $40 \mu F cm^{-2}$

At the junction between a metal and a conductive electrolyte: electrical voltage (Electrochemical half-cell potential) depending on the metal

At the junction between a metal and a conductive electrolyte: electrical voltage (Electrochemical half-cell potential) depending on the metal

Material	Reaction	Potential		
Aluminium	$Al^{3+} + 3e^{-}$	-1.67V		
Iron	$Fe^{2+} + 2e^-$	-0.441V		
Silver	$Ag^+ + e^-$	+1.7996V		
Platinum	$Pt^{2+} + 2e^{-}$	+1.2V		
Gold	$Au^{3+} + 3e^{-}$	+1.52V		
	$Au^+ + e^-$	+1.83V		
H ₂	$2H^{+} + 2e^{-}$	0.000V (Reference)		
at $T = 298K$				

At the junction between a metal and a conductive electrolyte: electrical voltage (Electrochemical half-cell potential) depending on the metal

Material	Reaction	Potential		
Aluminium	$Al^{3+} + 3e^{-}$	-1.67V		
Iron	$Fe^{2+} + 2e^-$	-0.441V		
Silver	$Ag^+ + e^-$	+1.7996V		
Platinum	$Pt^{2+} + 2e^{-}$	+1.2V		
Gold	$Au^{3+} + 3e^{-}$	+1.52V		
	$Au^+ + e^-$	+1.83V		
H ₂	$2H^{+} + 2e^{-}$	0.000V (Reference)		
at $T = 298K$				

Note that if symetrical materials \rightarrow overal voltage = 0V

charges may be shared by redox reactions: transfer of electrons between the two phases (metal, electrolyte)

- Reactions depends on the material,
- higly (voltage) non-linear,
- complexe modeling (resistive but not that much, nor capacitive...),
- in electrochemistry, considered as a **Constant Phase Element**.

charges may be shared by redox reactions: transfer of electrons between the two phases (metal, electrolyte)

- Reactions depends on the material,
- higly (voltage) non-linear,
- complexe modeling (resistive but not that much, nor capacitive...),
- in electrochemistry, considered as a **Constant Phase Element**.

let us call it Z_F , we will speak about it later

Tissue passive properties Conduction in ionic media Unveiling the membrane

2 Connecting to the tissues: electrodes

3 Examples of applications in oncology

BioImpedance in oncology (1/2)

First in-vitro studies on brest carcinoma:

Surowiec et al. (1988). Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Transactions on Biomedical Engineering, 35(4), 257-263.

BioImpedance in oncology (2/2)

Morimoto et al. (1993). A study of the electrical bio-impedance of tumors. Journal of Investigative Surgery, 6(1), 25-32.

Example of embedded system to monitor bio-impedance

Rodriguez et al. (2015). A batteryless sensor ASIC for implantable bio-impedance applications. IEEE transactions on biomedical circuits and systems, 10(3), 533-544.

To more recent systems (2/2)

Example of imaging using impedance tomography

Sun et al. (2010). On-chip electrical impedance tomography for imaging biological cells. Biosensors and Bioelectronics, 25(5), 1109-1115.

And more to follow with the lab session